Scientific Studies Alkaline Ionized Water

Benefits of Reduced (Ionized) Water

HAYASHI, Hidemitsu, M.D., Water Institute, & KAWAMURA, Munenori, M.D., Kyowa Medical Clinic, (1985-2000),

  1. Improvement of blood glucose and HbAIC levels in diabetes mellitus.
  2. Improvement of peripheral circulation in diabetic gangrene.
  3. Improvement of uric acid levels in gout.
  4. Improvement of liver function in hepatic disease, cirrhosis of liver, hepatitis.
  5. Improvement of gastroduodenal ulcers and prevention of recurrences.
  6. Improvement of cholesterol level; hypertension, angina, myocardial infarction.
  7. Improvement of hypersensitive disorders; atopic dermatitis, asthma, urticaria.
  8. Improvement of auto immune disorders; rheumatism, collagen disease, SLE.
  9. Improvement of so called specific diseases; Behcet’s syndrome, Crohn’s disease, ulcerative colitis, Kawasaki’s disease.
  10. Improvement of malignant tumors of liver; hepatoma, metastatic tumors.
  11. Improvement of general malaise, chronic constipation & diarrhea as well as persistent diarrhea occurred after gastric resection.
  12. Improvement of dehydration in infants with vomiting and diarrhea caused by viral infection
  13. Improvement of hyperbilirubinemia in newborns
  14. Experiences of pregnant women who took reduced water during their pregnancy; almost no emesis, smooth delivery, slight jaundice, enough lactation, smooth and satisfactory growth of newborns.


Drinks with alkaline negative oxidative reduction potential improve exercise performance in physically active men and women: Double-blind, randomized, placebo-controlled, cross-over trial of efficacy and safety

Ostojić Sergej, Faculty of Sport and Physical Education, University of Novi Sad

This is the first approach to understand the NORP effect in athletes. Intake of a NORP formulation for one week seems to increase serum bicarbonates and reduce the rate of blood lactate accumulation during exercise, maximal rate of perceived exertion and cardiovascular stress at critical running velocity with no significant adverse effects. Future studies should be undertaken in order to fully understand ergogenic potential of negative ionized water.


Acid-base balance and hydration status following consumption of mineral-based alkaline bottled water

Daniel P Heil
Movement Science/Human Performance Laboratory, Department of Health & Human Development, H&PE Complex, Hoseaus Rm 121, Montana State University, Bozeman, MT USA

The present study sought to determine whether the consumption of a mineral-rich alkalizing (AK) bottled water could improve both acid-base balance and hydration status in young healthy adults under free-living conditions. The AK water contains a naturally high mineral content along with Alka-PlexLiquid™, a dissolved supplement that increases the mineral content and gives the water an alkalizing pH of 10.0.

Consumption of AK water was associated with improved acid-base balance (i.e., an alkalization of the blood and urine) and hydration status when consumed under free-living conditions. In contrast, subjects who consumed the placebo bottled water showed no changes over the same period of time. These results indicate that the habitual consumption of AK water may be a valuable nutritional vector for influencing both acid-base balance and hydration status in healthy adults.


Influence of bottled water on rehydration following a dehydrating bout of cycling exercise

Consumption of the experimental water resulted in significantly less urine output, a tendency for more water to be retained in the blood, and a higher overall water retention rate over the placebo water. Collectively, these results indicate that consumption of the experimental bottled water following a dehydrating bout of exercise provided faster and more complete rehydration to cyclists than the highly-filtered bottled water. It is likely that the Alka-PlexLiquid™ supplement, the high pH of 10.0, or some other unidentified component of the experimental water, was responsible for these observations.


Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage.

Biochem Biophys Res Commun.
1997 May 8;234(1):269-74.

Shirahata S, Kabayama S, Nakano M, Miura T, Kusumoto K, Gotoh M, Hayashi H, Otsubo K, Morisawa S, Katakura Y.

Institute of Cellular Regulation Technology, Graduate School of Genetic Resources Technology, Kyushu University, Fukuoka, Japan. Active oxygen species or free radicals are considered to cause extensive oxidative damage to biological macromolecules, which brings about a variety of diseases as well as aging. The ideal scavenger for active oxygen should be ‘active hydrogen’. ‘Active hydrogen’ can be produced in reduced water near the cathode during electrolysis of water. Reduced water exhibits high pH, low dissolved oxygen (DO), extremely high dissolved molecular hydrogen (DH), and extremely negative redox potential (RP) values. Strongly electrolyzed-reduced water, as well as ascorbic acid, (+)-catechin and tannic acid, completely scavenged O.-2 produced by the hypoxanthine-xanthine oxidase (HX-XOD) system in sodium phosphate buffer (pH 7.0). The superoxide dismutase (SOD)-like activity of reduced water is stable at 4 degrees C for over a month and was not lost even after neutralization, repeated freezing and melting, deflation with sonication, vigorous mixing, boiling, repeated filtration, or closed autoclaving, but was lost by opened autoclaving or by closed autoclaving in the presence of tungsten trioxide which efficiently adsorbs active atomic hydrogen. Water bubbled with hydrogen gas exhibited low DO, extremely high DH and extremely low RP values, as does reduced water, but it has no SOD-like activity. These results suggest that the SOD-like activity of reduced water is not due to the dissolved molecular hydrogen but due to the dissolved atomic hydrogen (active hydrogen). Although SOD accumulated H2O2 when added to the HX-XOD system, reduced water decreased the amount of H2O2 produced by XOD. Reduced water, as well as catalase and ascorbic acid, could directly scavenge H2O2. Reduced water suppresses single-strand breakage of DNA b active oxygen species produced by the Cu(II)-catalyzed oxidation of ascorbic acid in a dose-dependent manner, suggesting that reduced water can scavenge not only O2.- and H2O2, but also 1O2 and .OH. PMID: 9169001 [PubMed – indexed for MEDLINE]


Electrochemically reduced water protects neural cells from oxidative damage. (full report)

Kashiwagi T1Yan H2Hamasaki T2Kinjo T2Nakamichi N1Teruya K3Kabayama S4Shirahata S3.
1Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan.
2Division of Life Engineering, Graduate School of Systems Life Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-0053, Japan.
3Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan ; Division of Life Engineering, Graduate School of Systems Life Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-0053, Japan.
4Nihon Trim Co. LTD., 1-8-34 Oyodonaka, Kita-ku, Osaka 531-0076, Japan.

Aging-related neurodegenerative disorders are closely associated with mitochondrial dysfunction and oxidative stresses and their incidence tends to increase with aging. Brain is the most vulnerable to reactive species generated by a higher rate of oxygen consumption and glucose utilization compared to other organs. Electrochemically reduced water (ERW) was demonstrated to scavenge reactive oxygen species (ROS) in several cell types. In the present study, the protective effect of ERW against hydrogen peroxide (H2O2) and nitric oxide (NO) was investigated in several rodent neuronal cell lines and primary cells. ERW was found to significantly suppress H2O2 (50-200 μM) induced PC12 and SFME cell deaths. ERW scavenged intracellular ROS and exhibited a protective effect against neuronal network damage caused by 200 μM H2O2 in N1E-115 cells. ERW significantly suppressed NO-induced cytotoxicity in PC12 cells despite the fact that it did not have the ability to scavenge intracellular NO. ERW significantly suppressed both glutamate induced Ca(2+) influx and the resulting cytotoxicity in primary cells. These results collectively demonstrated for the first time that ERW protects several types of neuronal cells by scavenging ROS because of the presence of hydrogen and platinum nanoparticles dissolved in ERW.

ERW was found to protect N1E-115, PC12, SFME, and MCCNP cells from oxidative stresses caused by H2O2, glutamate, and SNP treatments. This neuronal cell protection stemmed from the ROS specific scavenging ability of dissolved hydrogen and Pt nps in the ERW. The present communication provides encouraging data for the therapeutic applicability of ERW against NDs.


Anti-obesity effect of alkaline reduced water in high fat-fed obese mice.

Ignacio RM1Kang TYKim CSKim SKYang YCSohn JHLee KJ.
1Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju, Gangwon 220–710, South Korea.

Whether or not alkaline reduced water (ARW) has a positive effect on obesity is unclear. This study aims to prove the positive effect of ARW in high-fat (HF) diet-induced obesity (DIO) in C57BL/6 mice model. Toward this, obesity was induced by feeding the C57BL/6 male mice with high-fat diet (w/w 45% fat) for 12 weeks. Thereafter, the animals were administered with either ARW or tap water. Next, the degree of adiposity and DIO-associated parameters were assessed: clinico-pathological parameters, biochemical measurements, histopathological analysis of liver, the expression of cholesterol metabolism-related genes in the liver, and serum levels of adipokine and cytokine. We found that ARW-fed mice significantly ameliorated adiposity: controlled body weight gain, reduced the accumulation of epididymal fats and decreased liver fats as compared to control mice. Accordingly, ARW coordinated the level of adiponectin and leptin. Further, mRNA expression of cytochrome P450 (CYP)7A1 was upregulated. In summary, our data shows that ARW intake inhibits the progression of HF-DIO in mice. This is the first note on anti-obesity effect of ARW, clinically implying the safer fluid remedy for obesity control.


“Death of leukemia cells”

Enhanced induction of mitochondrial damage and apoptosis in human leukemia HL-60 cells due to electrolyzed-reduced water and glutathione.

Tsai CF1Hsu YWChen WKHo YCLu FJ.

1 Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.

Electrolzyed-reduced water (ERW) is a higher pH and lower oxidation-reduction potential water. In the present study, we examined the enhanced effect of ERW in the apoptosis of leukemia cells (HL-60) induced by glutathione (GSH). An enhanced inhibitory effect on the viability of the HL-60 cells was observed after treatment with a combination of ERW with various concentrations of GSH, whereas no cytotoxic effect in normal peripheral blood mononuclear cells was observed. The results of apoptotic related protein indicated that the induction of HL-60 cell death was caused by the induction of apoptosis through upregulation of Bax and downregulation of Bcl-2. The results of further investigation showed a diminution of intracellular GSH levels in ERW, and combination with GSH groups. These results suggest that ERW is an antioxidant, and that ERW, in combination with GSH, has an enhanced apoptosis-inducing effect on HL-60 cells, which might be mediated through the mitochondria-dependent pathway.


“Slow growth of tumors”

Inhibitory effect of electrolyzed reduced water on tumor angiogenesis.

Ye J1Li YHamasaki TNakamichi NKomatsu TKashiwagi TTeruya KNishikawa RKawahara TOsada KToh KAbe MTian HKabayama SOtsubo K,Morisawa SKatakura YShirahata S.

1 Graduate School of Systems Life Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan.
Vascular endothelial growth factor (VEGF) is a key mediator of tumor angiogenesis. Tumor cells are exposed to higher oxidative stress compared to normal cells. Numerous reports have demonstrated that the intracellular redox (oxidation/reduction) state is closely associated with the pattern of VEGF expression. Electrolyzed reduced water (ERW) produced near the cathode during the electrolysis of water scavenged intracellular H(2)O(2) and decreased the release of H(2)O(2) from a human lung adenocarcinoma cell line, A549, and down-regulated both VEGF transcription and protein secretion in a time-dependent manner. To investigate the signal transduction pathway involved in regulating VEGF expression, mitogen-activated kinase (MAPK) specific inhibitors, SB203580 (p38 MAPK inhibitor), PD98059 (ERK1/2 inhibitor) and JNKi (c-Jun N-terminal protein kinase inhibitor) were applied. The results showed that only PD98059 blocks VEGF expression, suggesting an important role for ERK1/2 in regulating VEGF expression in A549 cells. As well, ERW inhibited the activation of extracellular signal-regulated kinase (ERK) in a time-dependent manner. Co-culture experiments to analyze in vitro tubule formation assay revealed that A549 cell-derived conditioned medium significantly stimulated the formation of vascular tubules in all analyzed parameters; tubule total area, tubule junction, number of tubules, and total tubule length. ERW counteracted the effect of A549 cell-conditioned medium and decreased total tube length (p<0.01). The present study demonstrated that ERW down-regulated VEGF gene transcription and protein secretion through inactivation of ERK.


“Prevent multiplication of cancer cells”

Electrolyzed Reduced Water Supplemented with Platinum Nanoparticles Suppresses Promotion of Two-stage Cell Transformation.

Nishikawa R1Teruya KKatakura YOsada KHamasaki TKashiwagi TKomatsu TLi YYe JIchikawa AOtsubo KMorisawa SXu QShirahata S.

1 Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, 812-8581, Higashi-ku, Fukuoka, Japan.
In the two-stage cell transformation theory, cancer cells first receive initiation, which is mainly caused by DNA damage, and then promotion, which enhances transformation. Murine Balb/c 3T3 cells are widely used for transformation experiments because they lose contact inhibition ability when transformed. Electrolyzed reduced water (ERW), which is produced near a cathode during electrolysis of water, is an alkaline drinking water that is beneficial to health. ERW contains a high concentration of dissolved hydrogen and scavenge reactive oxygen species (ROS), along with a small amount of platinum (Pt) nanoparticles (Pt nps) derived from Pt-coated titanium electrodes. Pt nps stably disperse in aqueous solution for a long time, and convert hydrogen molecules to active hydrogen (atomic hydrogen) that can scavenge ROS. Therefore, ERW supplemented with synthesized Pt nps is a model strong reduced water. This is the first report that ERW supplemented with synthesized Pt nps strongly prevents transformation of Balb/c 3T3 cells. ERW was prepared by electrolysis of 0.002 M NaOH solution using a batch-type electrolysis device. Balb/c 3T3 cells were treated with 3-methyl cholanthrene (MCA) as an initiation substance, followed by treatment with phorbol-12-myristate-13-acetate (PMA) as a promotion substance. MCA/PMA-induced formation of a transformation focus was strongly suppressed by ERW supplemented with Pt nps but not by ERW or Pt nps individually. ERW supplemented with Pt nps suppressed transformation at the promoter stage, not at initiation, suggesting that ERW supplemented with Pt nps suppressed the PMA-induced augmentation of intracellular ROS. ERW supplemented with Pt nps is a potential new antioxidant against carcinogenesis.


“Help improve glucose levels”

Anti-diabetic effects of electrolyzed reduced water in streptozotocin-induced and genetic diabetic mice.

Kim MJ1Kim HK.

1Department of Obesity management, Graduate School of Obesity Science, Dongduk Women’s University, 23-1 Wolkgukdong, Seoul, 136-714, South Korea.

Oxidative stress is produced under diabetic conditions and is likely involved in progression of pancreatic beta-cell dysfunction found in diabetes. Both an increase in reactive oxygen free radical species (ROS) and a decrease in the antioxidant defense mechanism lead to the increase in oxidative stress in diabetes. Electrolyzed reduced water (ERW) with ROS scavenging ability may have a potential effect on diabetic animals, a model for high oxidative stress. Therefore, the present study examined the possible anti-diabetic effect of ERW in two different diabetic animal models. The genetically diabetic mouse strain C57BL/6J-db/db (db/db) and streptozotocin (STZ)-induced diabetic mouse were used as insulin deficient type 1 and insulin resistant type 2 animal model, respectively. ERW, provided as a drinking water, significantly reduced the blood glucose concentration and improved glucose tolerance in both animal models. However, ERW fail to affect blood insulin levels in STZ-diabetic mice whereas blood insulin level was markedly increased in genetically diabetic db/db mice. This improved blood glucose control could result from enhanced insulin sensitivity, as well as increased insulin release. The present data suggest that ERW may function as an orally effective anti-diabetic agent and merit further studies on its precise mechanism.


“Prevent cell damage in the pancreas that can lead to diabetes” (full)

Protective mechanism of reduced water against alloxan-induced pancreatic beta-cell damage: Scavenging effect against reactive oxygen species.

Li Y1Nishimura TTeruya KMaki TKomatsu THamasaki TKashiwagi TKabayama SShim SYKatakura YOsada KKawahara TOtsubo KMorisawa S,Ishii YGadek ZShirahata S.
1Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Japan.

Reactive oxygen species (ROS) cause irreversible damage to biological macromolecules, resulting in many diseases. Reduced water (RW) such as hydrogen-rich electrolyzed reduced water and natural reduced waters like Hita Tenryosui water in Japan and Nordenau water in Germany that are known to improve various diseases, could protect a hamster pancreatic beta cell line, HIT-T15 from alloxan-induced cell damage. Alloxan, a diabetogenic compound, is used to induce type 1 diabetes mellitus in animals. Its diabetogenic effect is exerted via the production of ROS. Alloxan-treated HIT-T15 cells exhibited lowered viability, increased intracellular ROS levels, elevated cytosolic free Ca(2+) concentration, DNA fragmentation, decreased intracellular ATP levels and lowering of glucose-stimulated release of insulin. RW completely prevented the generation of alloxan-induced ROS, increase of cytosolic Ca(2+) concentration, decrease of intracellular ATP level, and lowering of glucose-stimulated insulin release, and strongly blocked DNA fragmentation, partially suppressing the lowering of viability of alloxan-treated cells. Intracellular ATP levels and glucose-stimulated insulin secretion were increased by RW to 2-3.5 times and 2-4 times, respectively, suggesting that RW enhances the glucose-sensitivity and glucose response of beta-cells. The protective activity of RW was stable at 4 degrees C for over a month, but was lost by autoclaving. These results suggest that RW protects pancreatic beta-cells from alloxan-induced cell damage by preventing alloxan-derived ROS generation. RW may be useful in preventing alloxan-induced type 1-diabetes mellitus.


“Extended lifespan in nematode”

Mechanism of the lifespan extension of Caenorhabditis elegans by electrolyzed reduced water–participation of Pt nanoparticles.

Yan H1Kinjo TTian HHamasaki TTeruya KKabayama SShirahata S.
1Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan.

Electrolyzed reduced water (ERW) contains a large amount of molecular hydrogen and a small amount of Pt nanoparticles (Pt NPs). We have found that ERW significantly extended the lifespan of Caenorhabditis elegans in a novel culture medium designated Water Medium. In this study, we found that synthetic Pt NPs at ppb levels significantly extended the nematode lifespan and scavenged reactive oxygen species (ROS) in the nematode induced by paraquat treatment. In contrast, a high concentration of dissolved molecular hydrogen had no significant effect on the lifespan of the nematode. These findings suggest that the Pt NPs in ERW, rather than the molecular hydrogen, extend the longevity of the nematode, at least partly by scavenging ROS.


“Antioxidative effect on tumor”

Suppressive effects of electrochemically reduced water on matrix metalloproteinase-2 activities and in vitro invasion of human fibrosarcoma HT1080 cells.

Kinjo T1Ye JYan HHamasaki TNakanishi HToh KNakamichi NKabayama STeruya KShirahata S.
1 Division of Life Engineering, Graduate School of Systems Life Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan.

It has been demonstrated that hydrogen peroxide (H(2)O(2)) is directly associated with elevated matrix metalloproteinase-2 (MMP-2) expression in several cell lines. Electrochemically reduced water (ERW), produced near the cathode during electrolysis, and scavenges intracellular H(2)O(2) in human fibrosarcoma HT1080 cells. RT-PCR and zymography analyses revealed that when HT1080 cells were treated with ERW, the gene expression of MMP-2 and membrane type 1 MMP and activation of MMP-2 was repressed, resulting in decreased invasion of the cells into matrigel. ERW also inhibited H(2)O(2)-induced MMP-2 upregulation. To investigate signal transduction involved in MMP-2 downregulation, mitogen-activated protein kinase (MAPK)-specific inhibitors, SB203580 (p38 MAPK inhibitor), PD98059 (MAPK/extracellular regulated kinase kinase 1 inhibitor) and c-Jun NH(2)-terminal kinase inhibitor II, were used to block the MAPK signal cascade. MMP-2 gene expression was only inhibited by SB203580 treatment, suggesting a pivotal role of p38 MAPK in regulation of MMP-2 gene expression. Western blot analysis showed that ERW downregulated the phosphorylation of p38 both in H(2)O(2)-treated and untreated HT1080 cells. These results indicate that the inhibitory effect of ERW on tumor invasion is due to, at least in part, its antioxidative effect.


“Effect on inflammatory skin disorder”

The Drinking Effect of Hydrogen Water on Atopic Dermatitis Induced by Dermatophagoides farinae Allergen in NC/Nga Mice.

Ignacio RM1Kwak HS2Yun YU2Sajo ME1Yoon YS1Kim CS3Kim SK3Lee KJ1.
1Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju, Gangwon 220-701, Republic of Korea.
2ECO Solution Team, Digital Media and Communications R&D Center, Samsung Electronics Co., Ltd., Suwon, Gyeonggi 443-742, Republic of Korea.
3Department of Microbiology, Wonju College of Medicine, Yonsei University, Wonju, Gangwon 220-701, Republic of Korea.

Hydrogen water (HW) produced by electrolysis of water has characteristics of extremely low oxidation-reduction potential (ORP) value and high dissolved hydrogen (DH). It has been proved to have various beneficial effects including antioxidant and anti-inflammatory effects; however, HW effect on atopic dermatitis (AD), an inflammatory skin disorder, is poorly documented. In the present study, we examined the immunological effect of drinking HW on Dermatophagoides farinae-induced AD-like skin in NC/Nga mice. Mice were administered with HW and purified water (PW) for 25 days. We evaluated the serum concentration of pro-inflammatory (TNF- α ), Th1 (IFN- γ , IL-2, and IL-12p70), Th2 (IL-4, IL-5, and IL-10), and cytokine expressed by both subsets (GM-CSF) to assess their possible relationship to the severity of AD. The serum levels of cytokines such as IL-10, TNF- α , IL-12p70, and GM-CSF of mice administered with HW was significantly reduced as compared to PW group. The results suggest that HW affects allergic contact dermatitis through modulation of Th1 and Th2 responses in NC/Nga mice. This is the first note on the drinking effect of HW on AD, clinically implying a promising potential remedy for treatment of AD.


“Anti-diabetic effect of Alkaline-reduced water on rats”

The neuroprotective effects of electrolyzed reduced water and its model water containing molecular hydrogen and Pt nanoparticles

Hanxu Yan1Taichi Kashiwaki2Takeki Hamasaki2Tomoya Kinjo1Kiichiro Teruya12,Shigeru Kabayama3 and Sanetaka Shirahata12*


Human brain is the biggest energy consuming tissue in human body. Although it only represents 2% of the body weight, it receives 20% of total body oxygen consumption and 25% of total body glucose utilization. For that reason, brain is considered to be the most vulnerable part of human body against the reactive oxygen species (ROS), a by-product of aerobic respiration. Oxidative stress is directly related to a series of brain dysfunctional disease such as Alzheimer’s disease, Parkinson’s disease etc. Electrolyzed reduced water (ERW) is a functional drinking water containing a lot of molecular hydrogen and a small amount of platinum nanoparticles (Pt NPs, Table 1). ERW is known to scavenge ROS and protect DNA from oxidative damage [1]. We previously showed that ERW was capable of extending lifespan of Caenorhabditis elegans by scavenging ROS [2]. Molecular hydrogen could scavenge ROS and protected brain from oxidative stress [3]. Pt NPs are also a new type of multi-functional ROS scavenger [4].


ERW significantly reduced the cell death induced by H2O2 pretreatment (Figure 1). ERW also scavenged the intracellular ROS and prevented the decrease of mitochondrial membrane potential and ATP production induced by ROS. We also examined the neuroprotective effects of molecular hydrogen and Pt NPs and showed that both molecular hydrogen and Pt NPs contributed to the neuroprotective effects of ERW.


The results suggest that ERW is beneficial for the prevention and alleviation of oxidative stress-induced human neurodegenerative diseases.


“Favors growth of beneficial intestinal bacteria”

Selective stimulation of the growth of anaerobic microflora in the human intestinal tract by electrolyzed reducing water.

Vorobjeva NV1.
1Department of Physiology of Microorganisms, Biology Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia.

96-99% of the “friendly” or residential microflora of intestinal tract of humans consists of strict anaerobes and only 1-4% of aerobes. Many diseases of the intestine are due to a disturbance in the balance of the microorganisms inhabiting the gut. The treatment of such diseases involves the restoration of the quantity and/or balance of residential microflora in the intestinal tract. It is known that aerobes and anaerobes grow at different oxidation-reduction potentials (ORP). The former require positive E(h) values up to +400 mV. Anaerobes do not grow unless the E(h) value is negative between -300 and -400 mV. In this work, it is suggested that prerequisite for the recovery and maintenance of obligatory anaerobic microflora in the intestinal tract is a negative ORP value of the intestinal milieu. Electrolyzed reducing water with E(h) values between 0 and -300 mV produced in electrolysis devices possesses this property. Drinking such water favours the growth of residential microflora in the gut. A sufficient array of data confirms this idea. However, most researchers explain the mechanism of its action by an antioxidant properties destined to detox the oxidants in the gut and other host tissues. Evidence is presented in favour of the hypothesis that the primary target for electrolyzed reducing water is the residential microflora in the gut.


Clinical Impovements Obtained From The Intake Of Reduced Water

Extracts from ” Presentation At The Eight Annual International Symposium On man And His Environment in Health And Disease” on February 24th 1990, at The Grand Kempinski Hotel, Dalls, Texas, USA by Dr. H. Hayashi, M.D. and Dr. M Kawamura, M.D., on : – THE CONCEPT OF PREHEPATIC MEDICINESSince the introduction of alkaline ionic water in our clinic in 1985, we have had the following interesting clinical experiences in the use of this type of water. By the use of alkaline ionic water for drinking and the preparation of meals for our in-patients, we have noticed :Declines in blood sugar levels in diabetic patients.

Improvements in peripheral circulation in diabetic gangrene.

Declines in uric acid levels in patients with gout.

Improvements in liver function exams in hepatic disorders.

Improvements in gastroduodenal ulcer and prevention of their recurrences.

Improvements in hypertension and hypotension.

Improvements in allergic disorders such as asthma, urticaria, rhinites and atopic dermatitis.

Improvements in persistent diarrhoea which occurred after gastrectomy.

Quicker improvements in post operative bower paralysis.

Improvements in serum bilirubin levels in new born babies. Being confirming clinical improvements, we have always observed changes of stools of the patients, with the colour of their feaces changing from black-brown colour to a brigher yellow-brown one, and the odour of their feaces becoming almost negligible. The number of patients complaining of constipation also decreased markedly. The change of stool findings strongly suggests that alkaline ionic water intake can decrease the production of putrefield or pathogenic metabolites.Devices to produce reduced water were introduced into our clinic in May 1985. Based on the clinical experiences obtained in the past 15 years, it can be said that introduction of electrolyzed-reduced water for drinking and cooking purpose for in-patients should be the very prerequisite in our daily medical practices. Any dietary recipe cannot be a scientific one if property of water is not taken by the patients is not taken into consideration.The Ministry of Health and Welfare in Japan announced in 1965 that the intake of reduced water is effective for restoration of intestinal flora metabolism.


Clinical evaluation of alkaline ionized water for abdominal complaints: Placebo controlled double blind tests

by Hirokazu Tashiro, Tetsuji Hokudo, Hiromi Ono, Yoshihide Fujiyama, Tadao Baba (National Ohkura Hospital, Dept. of Gastroenterology; Institute of Clinical Research, Shiga University of Medical Science, Second Dept. of Internal Medicine)Effect of alkaline ionized water on abdominal complaints was evaluated by placebo controlled double blind tests. Overall scores of improvement using alkaline ionized water marked higher than those of placebo controlled group, and its effect proved to be significantly higher especially in slight symptoms of chronic diarrhoea and abdominal complaints in cases of general malaise. Alkaline ionized water group did not get interrupted in the course of the test, nor did it show serious side effects nor abnormal test data. It was confirmed that alkaline ionized water is safer and more effective than placebos.


Effect of alkaline ionized water on abdominal complaints was clinically examined by double blind tests using clean water as placebo. Overall improvement rate was higher for alkaline ionized water group than placebo group and the former proved to be significantly more effective than the other especially in cases of slight symptoms. Examining improvement rate for each case of chronic diarrhoea, constipation and abdominal complaints, alkaline ionized water group turned out to be more effective than placebo group for chronic diarrhoea, and abdominal complaints. The test was stopped in one case of chronic diarrhoea, among placebo group due to exacerbation, whereas alkaline ionized water group did not stop testing without serious side effects or abnormal test data in all cases. It was confirmed that alkaline ionized water is more effective than clean water against chronic diarrhoea, abdominal complaints and overall improvement rate (relief of abdominal complaints) and safer than clean water.


Since the approval of alkaline ionized water electrolyzers by Pharmaceutical Affairs Law in 1966 for its antacid effect and efficacy against gastrointestinal disorders including hyperchylia, indigestion, abnormal gastrointestinal fermentation and chronic diarrhoea, they have been extensively used among patients. However, medical and scientific evaluation of their validity is not established. In our study, we examined clinical effect of alkaline ionized water on gastrointestinal disorders across many symptoms in various facilities. Particularly, we studied safety and usefulness of alkaline ionized water by doubleblind tests using clean water as a control group.

Test subjects and methods

163 patients (34 men, 129 women, age 21 to 72, average 38.6 years old) of indigestion, abnormal gastrointestinal fermentation (with abnormal gas emission and rugitus) and abdominal complaints caused by irregular dejection (chronic diarrhoea, or constipation) were tested as subjects with good informed consent. Placebo controlled double blind tests were conducted using alkaline ionized water and clean water at multiple facilities. An alkaline ionized water electrolyzer sold commercially was installed with a pump driven calcium dispenser in each of the subject homes. Tested alkaline ionized water had pH at 9.5 and calcium concentration at 30ppm. Each subject in placebo group used a water purifier that has the same appearance as the electrolyzer and produces clean water.The tested equipment was randomly assigned by a controller who scaled off the key code which was stored safely until the tests were completed and the seal was opened again.Water samples were given to each patient in the amount of 200ml in the morning with the total of 50OmI or more per day for a month. Before and after the tests, blood, urine and stool were tested and a log was kept on the subjective symptoms, bowel movements and accessory symptoms. After the tests, the results were analyzed based on the log and the test data.

Water Ionizer Test Results

1. SymptomsAmong 163 tested subjects, alkaline ionized water group included 84 and placebo group 79. Background factors such as gender, age and basal disorders did not contribute to significant difference in the results.2. Overall improvement rate

As to overall improvement rate of abdominal complaints, alkaline ionized water group had 2 cases of outstanding improvement (2.5%), 26 cases of fair improvement (32.1%), 36 cases of slight improvement (44.4%), 13 cases of no change (16%) and 4 cases of exacerbation (4.9%), whereas placebo group exhibited 4 (5.2%), 19 (24.7%), 27 (35.1%), 25 (32.5%) and 2 cases (2.6%) for the same category. Comparison between alkaline ionized water and placebo groups did not reveal any significant difference at the level of 5% significance according to the Wilcoxon test, although alkaline ionized water group turned out to be significantly more effective than placebo group at the level of p value of 0.22.Examining overall improvement rates by a 7, 2 test (with no adjustment for continuity) between the effective and noneffective groups, alkaline ionized water group had 64 (79%) of effective cases and 17 cases (21%) of non effective cases, whereas placebo group had 50 (64.9%) and 27 (35.1%) cases respectively. The result indicated that alkaline ionized water group was significantly more effective than placebo group at the level of p value of 0.0.48.Looking only at 83 slight cases of abdominal complaints, overall improvement rate for alkaline ionized water group(45 cases) was composed of 11 cases (242%) of fair improvement, 22 cases (48.9%) of slight improvement, 17 cases (44.7%) of no change and 3 cases (6.7%) of exacerbation, whereas placebo group (38 cases) had 3 (7.8%), 17 (44.7%), 17 (44.7%) and 1 (2.6%) cases for the same category. Alkaline ionized water group was significantly more effective than placebo group according to the comparison between the groups (p value = 0.033).3. Improvement rate by basal symptom

Basal symptoms were divided into chronic diarrhea, constipation and abdominal complaints (dyspepsia) and overall improvement rate was evaluated for each of them to study effect of alkaline ionized water. In case of chronic diarrhoea, alkaline ionized water group resulted in 94.1% of effective cases and 5.9% of non effective cases. Placebo group came up with 64,7% effective and 35.3% non effective. These results indicate alkaline ionized water group proved to be significantly more effective than placebo group. In case of slighter chronic diarrhoea, comparison between groups revealed that alkaline ionized water group is significantly more effective than placebo group (p=0.015). In case of constipation, alkaline ionized water group consisted of 80.5% of effective and 19.5% of non effective cases, whereas placebo group resulted in 73.3% effective and 26.3 non effective. As to abdominal complaints (dyspepsia), alkaline ionized water group had 85.7% of effective and 14.3% non effective cases while placebo group showed 47.1% and 62.9% respectively. Alkaline ionized water group proved to be significantly more effective than placebo group (p=0.025).4. Safety

Since one case of chronic diarrhoea, in placebo group saw exacerbation, the test was stopped. There was no such cases in alkaline ionized water group. Fourteen cases of accessory symptoms, 8 in alkaline ionized water group and 6 in placebo group, were observed, none of which were serious. 31 out of 163 cases (16 in alkaline ionized water group, 15 in placebo group) exhibited fluctuation in test data, although alkaline ionized water group did not have any problematic fluctuations compared to placebo group. Two cases in placebo group and one case in alkaline ionized water group have seen K value of serum climb up and resume to normal value after re testing which indicates the value changes were temporary.


As a result of double blind clinical tests of alkaline ionized water and clean water, alkaline ionized water was proved to be more effective than clean water against chronic diarrhoea, abdominal complaints (dyspepsia) and overall improvement rate (relief from abdominal complaints). Also, safety of alkaline ionized water was confirmed which clinically verifies its usefulness.


Explanation of pH Regulation during Exercise



Any products mentioned on this site are not intended to diagnose, treat, cure, or prevent any disease. Information and statements made are for education purposes and are not intended to replace the advice of your family doctor.